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Stress responses of the sea cucumber Holothuria forskali during aquaculture

handling and transportation

Nina Tonn?, Sara C. Novais®?, Cétia S. E. Silva®, Hugo A. Morais®, Jodo P. S. Correia® and Marco F. L. Lemos?

®MARE - Marine and Environmental Sciences Centre, ESTM, Instituto Politécnico de Leiria, Peniche, Portugal; bDepartment of Ecological
Science, Vrije University, Amsterdam, the Netherlands; Flying Sharks, Horta, Portugal

ABSTRACT

Animal welfare during handling and transportation to aquaculture facilities or public aquaria is
commonly estimated by addressing injury and mortality levels. Although these procedures have
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been optimized for different species, data on individual species’ cellular capabilities to tolerate

stress are still scarce. In the present study, several biomarkers related with oxidative stress and
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energy metabolism were assessed in Holothuria forskali during animal acclimation, pre-

transport, transport and quarantine. Combined analyses confirmed that sea cucumbers
experienced high oxidative stress during transport, but had the capability to deal with it
using a complex of cellular defence mechanisms, which enabled recovery from oxidative
stress without permanent damage. Through a better understanding of individual species and
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the development of optimal parameters, this approach has the potential to improve animal
wellbeing during and after acclimation, transportation and recovery processes.

Introduction

Public aquaria have been increasingly concerned with
animal welfare, public engagement and the conserva-
tion of species. Opportunities for public aquaria to
improve the sustainability of the aquatic animal trade
have been discussed in Tlusty et al. (2013). For the
purpose of species protection, public education and
research, organisms of interest are carefully collected
from their natural environment and transported to
public aquaria worldwide, by air or road, on a daily
basis (Chandurvelan et al. 2013; Dhanasiri et al. 2013;
Manuel et al. 2014; Boerrigter et al. 2015). Also,
despite attracting less public attention, improving
animal welfare during organism transport to commercial
aquaculture facilities will probably increase organism
fitness to better suit business needs. Standard tech-
niques and equipment to optimize animal welfare,
and minimize injuries and mortality rates during long-
distance transport, have been established for several
vertebrate species, including the guppy (Teo et al.
1989), ratfish and tiger rockfish (Correia 2001), scal-
loped hammerhead shark (Young et al. 2002), devil-
ray, meagre and ocean sunfish (Correia et al. 2008),
among others. Stress during transport has also been
largely studied on commercially important invertebrate
species, such as the crab Cancer pagurus Linnaeus,

1758 (Barrento et al. 2010), the lobster Homarus ameri-
canus H. Milne Edwards, 1837 (Lorenzon et al. 2007) or
different jellyfish (Pierce 2009). However, stress reduction
is not only vital during the transportation itself but
should also be regarded during the preceding animal
collection and acclimation. To ensure long-term survival
of different animals, optimizations have been performed
with regard to oxygen saturation, ammonia minimiz-
ation, temperature and pH stabilization (Correia et al.
2011, 2008). As those studies have primarily been
focused on endpoints such as injury and mortality
levels, information regarding stress levels and physio-
logical responses at the cellular level is scarce, but of
paramount importance.

Stress typically leads to elevated oxygen consump-
tion and subsequent production of reactive oxygen
species (ROS), potentially leading to a reduction in
fitness that may ultimately lead to death. Key antioxi-
dant enzymes that protect the cells against ROS
include superoxide dismutase (SOD), catalase (CAT)
and glutathione reductase (GR). Nevertheless, if the cel-
lular antioxidant system fails to lower ROS levels, oxi-
dative damage can occur in tissues and cellular
macromolecules in the form of, for instance, lipid peroxi-
dation (LPO) and DNA strand breaks (Alves et al. 2016;
Silva et al. 2016). Since the mechanisms to cope with
stress and maintain internal homeostasis are highly
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energy-consuming, the use of biomarkers involved in
energy metabolism can also give valuable information
about the organisms’ stress levels. Lactate dehydrogen-
ase (LDH) and isocitrate dehydrogenase (IDH) are
examples of enzymatic biomarkers related to anaerobic
and aerobic metabolisms, respectively, and their activity
measurements can give an indication of the metabolic
costs of stress responses. To address the global energy
budget of organisms, the cellular energy allocation
(CEA) indicator can also be applied. CEA is defined as
the ratio of total available energy (E,, i.e. sum of proteins,
lipids and carbohydrates) over energy consumption
(Ec), which is estimated by measuring the electron trans-
port system (ETS) activity — indicative of the organisms’
cellular respiration rate (De Coen et al. 2001; De Coen &
Janssen 2003; Verslycke et al. 2004a, 2004b).

The black sea cucumber Holothuria forskali Delle
Chiaje, 1823 is an echinoderm widely distributed in
the Mediterranean Sea and the north-east Atlantic
Ocean (Mercier & Hamel 2013). Along the coasts of
the West Region of Portugal, H. forskali is the prevalent
species of holothurian, commonly occurring in shallow
waters (0-50 m of depth) around hard-bottom areas,
especially on vertical surfaces (Southward & Campbell
2006). Because of its great abundance, accessibility
and popularity for public aquaria and aquaculture,
H. forskali is a suitable species to investigate the bio-
chemical stress responses during a transport simu-
lation, including preceding acclimation and
subsequent quarantine periods. Biomarkers related to
the antioxidant system and energetic status were
measured in two target tissues: the respiratory tree
and the longitudinal muscle. The respiratory tree is
exclusively present in holothurians (Dolmatov & Gina-
nova 2009) and serves as the primary respiratory
system through which holothurians extract most of
their oxygen (Newell & Courtney 1965).

Overall, the goal of this study was to investigate
stress responses of H. forskali at the biochemical level
during collection, acclimation, transport and quaran-
tine, with the use of cellular biomarkers indicative of
oxidative stress and changes in the energy metabolism,
providing tools to address an organism’s fitness. The
results of this study will prove invaluable to inform
future handling and transportation practices.

Materials and methods
Collection of organisms (Holothuria forskali)

Organisms of similar sizes (18 + 2 cm; contracted state)
were collected at Carreiro de Joanes (39°21'14.3"N,
9°23'43.6”"W), Peninsula of Peniche, central Portugal,

by scuba diving. During collection, the animals were
temporarily maintained in 50| transport containers
with regularly renewed seawater to ensure adequate
water quality. The organisms were transferred to the
aquaculture facilities, within the hour, where six organ-
isms were immediately dissected, processed and
placed at —80°C until further analysis (0 d) (see pro-
cedure section). The remaining organisms were kept
in a recirculating 600 | water tank with a 12 h:12 h
(light:dark) photoperiod, temperature (T) at 17 + 0.5°C,
oxygen saturation (DO) at 90 + 10%, salinity at 32+
1%, pH at 7.7+0.1 and ammonia concentration
(cNHs) under 0.006 mg/I. Water conditions were moni-
tored on a daily basis using a multiparametric probe,
YSI Professional Plus (Yellow Springs, Ohio, USA), and
Tropic Marin® AMMONIA-/AMMONIUM-TEST (Niklau-
sen, Luzern, Switzerland). The temperature and salinity
conditions in the tanks were chosen to mimic the
natural conditions of the collection site and were main-
tained throughout the entire experiment.

Experimental set-up

Acclimation

During the acclimation period (8 days), the organisms
were kept in 600 | tanks filled with seawater and con-
nected to a TMC 50001 filtration system (Tropical
Marine Centre, London, UK). For daily feeding, a 51
mixture of microalgae (1.5 x 10° cell/ml) was prepared
consisting in equal parts of the following species: Rho-
domonas lens Pascher & Ruttner, Isochrysis galbana
Parke, Phaeodactylum tricornutum Bohlin and Chlor-
ella sp. At each sampling day throughout the acclim-
ation period, seven organisms were randomly
sampled, processed, and kept at —80°C until further
analysis. Sampling occurred on days 1, 2, 4 and 8.

Pre-transport and transport

Two days prior to the transport (i.e. the pre-transport
period, days 8-10), the organisms were fasted to
decrease the amount of nitrogenous waste released
during transport. After sampling on day 10, a 16 h
transport was simulated according to previous studies
(e.g. Correia et al. 2011), transferring the organisms
into 7| plastic bags (five animals per bag). All bags
were filled with approximately 1/3 of water from the
acclimation system and 2/3 of medicinal oxygen
(Gasin, Portugal), sealed and stored inside a styrofoam
box, identical to the ones used in actual transports
(Berka 1986). Water parameters (pH, dissolved oxygen
and temperature) were monitored using Hannah Instru-
ments Oxy-Check HI9147 (oxygen and temperature;
Nusfaldu, Romania) and VWR Symphony SP70P (pH;



Singapore) at 0 h and 8 h of transport. Sampling of
five individuals occurred at 8 h and 16 h (see tissue
preparation section) and oxygen was renewed after
the 8 h-sampling.

Quarantine

Subsequent to the 16 h-transport sampling, the bags
containing the remaining organisms were opened
and carefully placed in a recirculating water tank as
described for the acclimation period, corresponding
to the quarantine period in a public aquarium. For
24 h, the water inside the bags was regularly
renewed with tank water to ensure adequate quality.
After 24 h, the animals were entirely relocated into
the ‘quarantine’ tanks. Sampling occurred at 24 h,
48 h and 96 h during the quarantine period.

Tissue preparation

Upon sampling, organisms were cold shock sacrificed,
and each organism was dissected for tissue samples
of the respiratory tree and longitudinal muscle, which
were homogenized using an Ystral homogenizer (D-
79282, Ballrechten-Dottingen, Germany). Homogen-
ized samples were split into several fractions, depend-
ing on the biomarkers to be analysed in each tissue, in
2 ml microtubes and stored at —80°C until further
analyses.

For each individual, 0.4 g (wet weight (ww)) of res-
piratory tree was homogenized in 2 ml 0.1 M potass-
ium-phosphate buffer (pH 7.4) and different fractions
were separated to measure LPO, DNA damage and
ETS. The rest of the homogenate was centrifuged at
10,000 g for 20 min (4°C) to obtain the post-mitochon-
drial supernatant (PMS) for the measurement of CAT,
SOD and GR activities.

Similarly, 0.8 g (ww) of muscle was homogenized in
4 ml ultrapure water and different fractions were separ-
ated to measure LPO, DNA damage and CEA. The rest
of the homogenate was centrifuged at 10,000 g for
20 min (4°C) to obtain PMS, to which an equal
volume of 0.2 M potassium-phosphate buffer (pH 7.4)
was added (final molarity of 0.1 M), for the measure-
ment of CAT, SOD and GR activities. To measure LDH
and IDH activities, the remaining homogenate was cen-
trifuged at 3000 g for 5 min (4°C) and the supernatant,
with an equal volume of 0.2 M potassium-phosphate
buffer (pH 7.4), was used for the enzyme activity
measurements.

Biomarker analysis

In all enzymatic assays and measurements, either
potassium-phosphate buffer (0.1 M, pH 7.4) or ultrapure
water was used as blank, depending on the medium
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present in the samples. Spectrophotometric measure-
ments were done in triplicate, at 25°C, in a Synergy
H1 Hybrid Multi-Mode microplate reader (Biotek®
Instrument, Vermont, USA).

Protein quantification for the normalizations was per-
formed using bovine y-globulin (BGG, Sigma-Aldrich,
USA) as standard protein, following the Bradford
method (Bradford 1976), using 96-well flat-bottom
plates. Absorbance was read at 600 nm and results
expressed in the mg of protein/ml.

Oxidative stress-related biomarkers

Lipid peroxidation (LPO). LPO was measured in the
form of thiobarbituric acid reactive species (TBARS), fol-
lowing the method of Ohkawa et al. (1979) and Bird &
Draper (1984), with adaptations published by Filho
et al. (2001) and Torres et al. (2002). The samples
were deproteinized with 12% trichloroacetic acid fol-
lowing the addition of 0.73% 2-thiobarbituric acid
(TBA), and the mixture was kept at 100°C for 1 h.
After centrifuging the samples at 11,500 g for 5 min,
the supernatant was used to measure absorbance at
535 nm. LPO levels were calculated and expressed in
nmol TBARS per g of ww using the TBA molar extinc-
tion coefficient at 535 nm of 1.56 x 10°> M/cm.

DNA damage. The degree of DNA damage was
assessed by measuring DNA strand breaks using the
DNA alkaline precipitation assay of Olive (1988) with
de Lafontaine et al. (2000) adaptations. Tissue hom-
ogenates (50 pl) were incubated with 500 pl of 2%
SDS solution containing 50 mM NaOH, 10 mM Tris,
10 mM EDTA and 500 ul of 0.12 M KCI at 60°C for 10
minutes. Samples were placed on ice for 15 minutes
to induce the precipitation of SDS associated nucleo-
proteins and genomic DNA, and were finally centri-
fuged at 8000g (4°C) for 5 min to enhance
precipitation. To quantify levels of damaged DNA mol-
ecules, the supernatant was mixed with Hoesch dye
(1 ug/ml bis-benzimide, Sigma-Aldrich, USA) in a 96-
well microplate. Fluorescence was measured using an
excitation/emission  wavelength of 360/450 nm.
Results were expressed as mg of DNA per g of ww,
using calf thymus DNA (Sigma-Aldrich, USA) as stan-
dard, using a curve with DNA concentrations
between 0 and 20 pg/ml.

Catalase (CAT) activity. CAT activity was measured fol-
lowing the method described by Claiborne (1985).
After adding 0.03 M H,0, to the PMS, CAT activity
was measured following the decrease in absorbance
at 240 nm for 3 min. CAT activity was expressed in
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pmol/min/mg of protein, using the H,O, molar extinc-
tion coefficient at 240 nm of 40 M/cm.

Superoxide dismutase (SOD) activity. SOD activity
was measured following the method described by
McCord & Fridovich (1969). After adding 0.05 M K-
phosphate buffer (pH 7.4), 0.14 mM xanthine, 0.06 M
cytochrome C and 0.01 U/ml xanthine oxidase to the
PMS, SOD activity was measured following the
decrease in absorbance at 550 nm for 5 min. SOD
activity was expressed in U/mg of protein using a
SOD standard of 1.5 U/ml, where 1 U represents the
amount of enzyme in the sample that causes 50% inhi-
bition of cytochrome C reduction.

Glutathione reductase (GR) activity. GR activity was
measured following the method described by Cribb
et al. (1989). After adding 0.05 M K-phosphate buffer
(pH 7.4) (containing 0.2 mM NADPH, 1 mM GSSG and
0.5 mM DTPA) to the PMS, GR activity was measured
following the decrease in absorbance at 340 nm for 2
min. The enzymatic activity was calculated using the
NADPH molar extinction coefficient at 340 nm of
6.2x10® M/cm and expressed in nmol/min/mg of
protein.

Energy metabolism-related biomarkers

Lactate dehydrogenase (LDH) activity. LDH activity
was measured following the method described by Vas-
sault (1983) with the adaptations of Diamantino et al.
(2001). After adding NADH and pyruvate to the
sample, LDH activity was measured following the
decrease in absorbance at 340 nm for 5 min that corre-
sponds to the oxidation of NADH when pyruvate is
being converted to lactate. Results were expressed as
nmol/min/mg protein, using the NADH molar extinc-
tion coefficient at 340 nm of 6.3 x 10> M/cm.

Isocitrate dehydrogenase (IDH) activity. IDH activity
was measured following the method described by
Ellis & Goldberg (1971) with the microplate adaptations
of Lima et al. (2007). After adding DL-isocitric acid and
NADP* to the sample, IDH activity was measured fol-
lowing the increase in NADPH formation at 340 nm
for 3 min. Results were calculated according to a
molar extinction coefficient of NADPH at 340 nm of
6.22x 10> M/cm and expressed as nmol/min/mg
protein.

Cellular energy allocation (CEA)

CEA was determined by comparing available energy
(Ea) and consumed energy (Ec) in the muscle tissue.
En was measured by summing the total content of

proteins, carbohydrates and lipids using spectropho-
tometry measurements according to De Coen &
Janssen (2003). Briefly, protein content was measured
via Bradford’s method (1976) following the absorbance
at 600 nm using bovine serum albumin (BSA, Sigma-
Aldrich, USA) as standard. Carbohydrate content was
measured with 5% phenol and 95% H,SO, following
the absorbance at 490 nm and using glucose (Sigma-
Aldrich, USA) as standard (De Coen & Janssen 2003).
Total lipids were extracted according to Bligh & Dyer
(1959) and measured by following the absorbance at
400 nm using tripalmitine (Sigma-Aldrich, USA) as stan-
dard. The results of protein, carbohydrate and lipid
fractions were then transformed into energetic equiva-
lents using enthalpy combustion (24 kJ/g proteins,
17.5 kl/g carbohydrates and 39.5kJ/g lipids), as
described by De Coen & Janssen (2003). E¢ was calcu-
lated based on the measurement of ETS activity (King
& Packard 1975), by adding a solution of NADPH and
INT (p-iodo-nitro-tetrazolium, Sigma-Aldrich, USA), fol-
lowing the absorbance at 490 nm for 3 min. The
oxygen consumption rate was calculated based on
stoichiometry (for each 2 mmol of formazan formed,
1 mmol of O, is consumed). The quantity of oxygen
consumed was then transformed into caloric values
using oxyenthalpic equivalents of 484 kJ/mol O, for
an average lipid, protein and carbohydrate mixture
(Gnaiger 1983; De Coen et al. 2001). After caloric trans-
formation, CEA was calculated as the ratio of Ex over Ec
and expressed in mJ per mg of muscle ww (Verslycke
et al. 2004a, 2004b).

Statistical analysis

All statistical analyses were performed using the stat-
istical package SigmaPlot version 11.0 (1997). To
assess differences within the first acclimation periods
(days O, 1, 2, 4 and 8), as well as within time points
during transport (day 10: 0, 8 and 16 hours), and
within time points during the quarantine period (days
10-14: 0, 24, 48 and 96 hours), a one-way analysis of
variance (ANOVA) was performed for each tissue.
Prior to each analysis, data were examined for normal-
ity (Kolmogorov-Smirnov test) and variance homogen-
eity (Levene’s test). In order to improve normal
distribution and homogeneity of variance, the dataset
was log10 or square root-transformed. In case of signifi-
cant outcomes, the post-hoc Dunnett's method was
applied for comparisons with the respective starting
point. To compare the two days of pre-transport
(days 8 and 10), a Student's t-test was applied.
Results are presented as mean with the respective



standard error. For all statistical tests, the significance
level was set at P < 0.05.

Results
Acclimation

Upon collection of the organisms (0 d), LPO levels were
elevated but showed a significant decrease already at
1d of acclimation (Figure 1a). On the contrary, DNA
damage gradually increased from 0d up to 8d in
both tissues (Figure 1b). Regarding the antioxidant
enzymes, responses differed between tissues: in the
respiratory tree, only an increase in CAT was observed
in the first 2 d of acclimation but the values returned to
baseline after 4 d, while in muscle CAT activity was sig-
nificantly reduced at 8 d and SOD activity was inhibited
since 1 d (Figure 1¢,d). No significant changes occurred
regarding GR activity (Figure 1e). Concerning the end-
points related to energy metabolism, there was a sig-
nificant increase in the ETS activity in the muscle at
8 d (Figure 2a) along with a reduced lipid content
(Figure 2b) and decreased LDH activity during the
acclimation period (Figure 2d).

Pre-transport

On day 10, corresponding to the pre-transport period
(fasting of the organisms occurred between days 8
and 10), LPO levels significantly decreased in the
muscle (Figure 1a) as well as the DNA damage levels
in both tissues (Figure 1b). CAT activity was signifi-
cantly induced after this period in both tissues
(Figure 1c). At the energetic level, significantly lower
ETS and IDH activities were observed in the muscle
(Figure 2a,d), as well as reduced carbohydrate levels
(Figure 2b).

Transport simulation

Seawater ammonia levels inside the bags during trans-
port simulation were always under 0.024 mol/I. During
this period there was a significant increase in CAT
activity in both tissues, whereas SOD activity signifi-
cantly decreased in muscle (Figure 1c,d). Indications
of increased oxidative damage were observed at 8 h
of transport with elevated LPO levels, which decreased
again at 16 h (Figure 1a). With regards to energy-
related endpoints, only ETS activity showed a signifi-
cant increase in the respiratory tree at 8 h of the trans-
port simulation (Figure 2a).
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Quarantine

During the quarantine period, no effects on DNA
damage were observed but the LPO levels increased
through time (Figure 1a,b). CAT activity levels signifi-
cantly decreased after 24 h in the respiratory tree
(Figure 1c). At 48 h, the reduction in ETS levels
(muscle) resulted in an increase in global CEA (Figure
2a,c). At 96 h, LDH activity was inhibited while IDH
was induced, accompanied by an increase in carbo-
hydrate levels (Figure 2b,d).

Discussion

Available studies concerning animal fitness/stress
during transportation and handling have primarily
been focused on injury and mortality levels, which
can be considered as rough endpoints concerning
animal fitness. In the present study, Holothuria forskali's
biochemical stress responses during four different
periods concerning the transport of these organisms
(acclimation, pre-transport, transport simulation and
quarantine) were assessed, providing improved tools
to address organism wellbeing in these kinds of
practices.

Upon collection, test organisms seemed to be able
to cope with the change of environment, recover
from the initial stress experienced during handling,
and acclimatize to aquaculture conditions. Not only
did none of the animals die, but there was also evi-
dence for successful acclimation, seen mostly in the
biomarkers measured in the muscle, namely: the fast
decrease in LPO levels; the decrease in the activity
of the antioxidant enzymes SOD and CAT, and the
decrease in LDH levels, which indicates that the
organisms were reducing their energy requirements
(Figure 1). However, when looking at the respiratory
tree results, there was an increase in the DNA damage
throughout the acclimation period (Figure 1b), indica-
tive of oxidative damage, along with an increase in cel-
lular metabolism (induction in ETS activity; Figure 2a),
yet those effects were apparently transient since
initial biomarker levels were restored at 10d. It is
likely that the organisms faced an initial imbalance
between DNA lesions and repair capacity due to con-
tinuous elevated ROS levels, and consequently, rapid
accumulation of DNA damage. The decrease of DNA
damage from day 8 to day 10, along with the high
metabolic rates at 8 d of the acclimation period, seem
to indicate that increased DNA repair mechanisms
were taking place, ultimately resulting in the lower
levels of both biomarkers at 10 d. The process of cellu-
lar DNA repair has been studied in circulating immune
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Figure 1. Oxidative stress related biochemical biomarkers in Holothuria forskali during acclimation (from 0 d to 8 d), pre-transport
(days 8-10), transport (day 10: 0, 8 and 16 h) and quarantine (days 10-14: 0, 24, 48 and 96 h) conditions, in the muscle and res-
piratory tree: (a) LPO - lipid peroxidation levels; (b) DNA damage levels; (c) CAT - catalase activity; (d) SOD - superoxide dismutase
activity; (e) GR - glutathione reductase activity. Graphs show mean values + standard error. *Represents significant differences
relative to the starting point of the respective period (ANOVA, Dunnett’s, P < 0.05).

cells (coelomocytes) of the sea cucumber Isostichopus
badionotus (Selenka, 1867) after exposure to H,0,
(El-Bibany et al. 2014). It was proposed that environ-
mental stress-induced formation of ROS, particularly
by H,0,, caused DNA strand breaks (lesions) which
were mended via an enzyme complex mechanism -
base excision repair. The presence of highly adapted

DNA repair mechanisms in sea cucumbers has been
claimed with regards to their constant exposure to
sediment-associated toxicants (El-Bibany et al. 2014).
In our study, the decline in DNA damage from 8 to
10 d might thus be explained by an upregulation of
DNA base excision repair in combination with enzy-
matic ROS defence via CAT and GR. Nevertheless,
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Figure 2. Energy metabolism-related biochemical biomarkers in Holothuria forskali during acclimation (from 0 d to 8 d), pre-trans-
port (days 8-10), transport (day 10: 0, 8 and 16 h) and quarantine (days 10-14: 0, 24, 48 and 96 h) conditions. (a) ETS — electron
transfer system activity in the muscle and respiratory tree; (b) E5 — energy available in the muscle through total levels of proteins,
lipids and carbohydrates; (c) CEA — cellular energy allocation index in the muscle; (d) LDH — lactate dehydrogenase and IDH - iso-
citrate dehydrogenase activity levels in the muscle tissue. Graphs show mean values + standard error. *Represents significant
differences relative to the starting point of the respective period (ANOVA, Dunnett’s, P < 0.05).

molecular markers following the gene expression of
BER-related enzymes would be necessary to confirm
this hypothesis.

Fish and invertebrate species are commonly
acclimatized for longer periods (Correia 2001; Young
et al. 2002; Lorenzon et al. 2007; Correia et al. 2008,
2011; Pierce 2009; Barrento et al. 2010; Rodrigues
et al. 2013; Boerrigter et al. 2015), although such long
acclimation periods, prior to international, long-dis-
tance transportations by road or air, range from 24 to
72 h. In the present experiment, H. forskali was
acclimatized for only eight days, yet biomarker analysis
confirmed a successful acclimation, and therefore the
physiological conditions for transportation were
achieved within this comparably shorter acclimation
period.

Usually, two days before transportation the organ-
isms are fasted to minimize the release of nitrogen
waste products during transportation (e.g. Rodrigues

et al. 2013). The fasting period of H. forskali during
the 2 d pre-transport resulted in the reactivation of
CAT and in the decrease of carbohydrate levels,
together with a lower cellular metabolism, probably
because no energy was being spent with feeding.
However, oxidative damage was not observed during
this period and the levels of both LPO and DNA
damage were even reduced, demonstrating that the
organisms were not under oxidative stress. Moreover,
although the organisms were fasted and a decrease
in energy reserves was observed, the elevated
enzyme activities show that the antioxidant enzyme
complex had not yet deteriorated, as verified in
longer fasting periods (dormancy) for other holothur-
ian species (Klanian 2013).

During the transport simulation, higher cellular res-
piration rates (ETS), oxidative damage (LPO) and upre-
gulation of antioxidant enzymes (CAT) provided
evidence that the animals experienced stress, possibly
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caused by increased ammonia excretion, verified after
8 h of transportation. Although the animals had been
fasted for 2d, the high organismal densities might
have caused such an increase in ammonia levels, and
certainly, for this slow metabolism species, a longer
period of fasting before transport would be preferable.
However, reducing the number of organisms per bag
and renewing high oxygen saturation (>100%) levels
halfway through the transport simulation (8 h) was
sufficient to counteract ammonia-induced oxidative
stress and damage. Furthermore, the energy metab-
olism of H. forskali was barely affected, which might
be a result of negligible energy loss due to reduced
movement during transport. Nevertheless, lower
holothurian densities in the transport bags are advisa-
ble to reduce the stress levels, as observed in the
present study - a recommendation that would not
be possible if only attending to injury status and
mortality rates.

During the quarantine period, sea cucumbers were
able to recover from the transport-induced stress, as
indicated by the decreased activity of antioxidant
enzymes, the decrease in cellular respiration, the
increase in energy reserves and global cellular energy
budget, especially after 48 h. As the animals were
slowly acclimatized to the new conditions by keeping
them inside their transporting bags within the first
24 h, there was not such a radical change of environ-
ment as the one they had experienced after collection
from the natural environment. Within the 96 h of quar-
antine, no injuries or mortality occurred and the phys-
iological/biochemical conditions were stable except for
fluctuations in LPO.

Summarizing, H. forskali does not require more
than one week to acclimate to aquaculture conditions
prior to transportation. Ensuring that no major stress
occurs during transportation, our data show that
48 h is the minimum quarantine period necessary
for the organisms to acclimate to the new conditions.
Notwithstanding, if the transportation period needs to
be adjusted for this species for longer travel, the quar-
antine should be adjusted as well.

Oxidative stress parameters together with the ener-
getic biomarkers used were shown to be good indi-
cators of the effects caused by environmental stress
during transportation and to be helpful in understand-
ing the organisms’ acclimation state. These cellular bio-
markers have been successfully applied as stress
indicators in other holothurian species, for example to
address the stress management of Apostichopus japoni-
cus (Selenka, 1867) during starvation and experimental
and natural aestivation (Yang et al. 2006; Fangyu et al.
2011; Du et al. 2013). However, although

methodological differences in the analysis of both
tissues do not allow for direct comparisons, overall
enzyme activities were constantly higher in the respirat-
ory tree than in the muscle, indicating that this tissue
plays a primary role in the antioxidant system of
H. forskali. The relations between endpoints and the
overall picture of the stress response was more consist-
ent in the muscle, which should therefore be the prefer-
ential tissue for such stress effect assessments.

Conclusions

Transport simulation studies with the black sea cucum-
ber (Holothuria forskali) have demonstrated that this
species exhibits the ability to tolerate transport
without considerable and lasting damage. Transport-
ing aquatic animals is necessary in order to conduct
scientific research or to provide safe environments for
species conservation. Provided that H. forskali are
given at least four days to acclimate prior to transport,
with at least two days fasting immediately before,
and two days more to recover in quarantine facilities,
our results demonstrated that the cellular mechanisms
of these holothurians were able to oppose temporary
stress induced by ROS, which cause lipid peroxidation
and DNA damage in the cell. Moreover, H. forskali
was able to maintain global energy allocation
during acclimation, fasting, transport simulation and
quarantine. During the process of capture and
transport, it can be concluded that the biochemical bio-
markers used to address stress in the organisms during
the different transportation stages provided sensitive
and highly informative endpoints. Additionally, these
tools are important additions to current monitored
endpoints (injuries and mortality rates) and are also
early warning endpoints highly related to organism
fitness/damage. This approach has shown a potential
to improve our understanding of individual species
when exposed to stressful conditions, and conse-
quently, support the development of optimal par-
ameters to improve animal wellbeing during
acclimation, handling, transportation and recovery.
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